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Accurate ship trajectory plays an important role for maritime traffic control and management, and ship trajectory prediction with
Automatic Identification System (AIS) data has attracted considerable research attentions in maritime traffic community.*e raw
AIS data may be contaminated by noises, which limits its usage in maritime traffic management applications in real world. To
address the issue, we proposed an ensemble ship trajectory reconstruction framework combining data quality control procedure
and prediction module. More specifically, the proposed framework implemented the data quality control procedure in three steps:
trajectory separation, data denoising, and normalization. In greater detail, the data quality control procedure firstly identified
outliers from the raw ship AIS data sample, which were further cleansed with the moving average model. *en, the denoised data
were normalized into evenly distributed data series (in terms of time interval). After that, the proposed framework predicted ship
trajectory with the artificial neural network. We verified the proposed model performance with two ship trajectories downloaded
from public accessible AIS data base.

1. Introduction

Maritime transportation occupies over 90% of global trade
in terms of goods delivering volume. Enhancing traffic safety
attracts huge attention considering that maritime traffic
incident can cause significant loss of human life, navigation
environment damage, etc. [1, 2]. To avoid potential maritime
accidents, various maritime surveillance data are collected
for the purpose of navigation environment awareness, which
provides accurate early-warning information to maritime
traffic participants [3]. *e AIS data involves meaningful
spatial-temporal maritime traffic information which sup-
ports various navigation operation decisions. More specif-
ically, the AIS data is a popular data source for analyzing ship
trajectory variation tendency. Note that AIS is a type of self-

reporting system originally designed for preventing po-
tential accident, which is a mandatory facility for cargo ships
(i.e., ship with gross tonnage larger than 300) [4–8].
Moreover, fishing boats with length longer than 15m are
required to install AIS equipment in the European Union
Member States [9–12].

*e AIS equipment transmits the static and kinematic
ship information (e.g., ship type, call sign, speed, latitude,
longitude, heading, Maritime Mobile Service Identity
(MMSI), etc.) at a variable refresh rate. More specifically, the
AIS system broadcasts the ship information ranging from
several minutes to two seconds based on the ship travelling
speeds (i.e., the AIS system updates its data at lower fre-
quency under larger maneuvering speed). In that manner,
ship (equipped with AIS facility) position can be obtained in
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real time in coastal area. Moreover, the large-scale AIS
datasets have been stored at regional or national data
centers, which can be accessible by users in request (note
that users may need to pay for accessing the AIS data).
Previous studies suggested that AIS data quality imposes
significant influence on the maritime traffic safety analysis,
and thus improving AIS data quality has become an active
topic in the maritime community [13, 14].

AIS data anomaly removal studies involve unsupervised
clustering method and neural network based and statistical
models [15, 16]. Liu et al. proposed an adaptive Douglas-
Peucker framework to suppress AIS data outliers in the
manner of data compression [17]. Deng introduced a Markov
based model to explore ship movement patterns, which were
further used to identify the abnormal AIS data samples [18].
Zhang et al. proposed a hierarchical density-based spatial
clustering of applications with noise based model to cluster
and denoise the raw AIS trajectories [19]. Rong et al. cleansed
the raw AIS data in the lateral and longitudinal dimensions
with a novel probability trajectory prediction model [20]. *e
neural network relevant models have shown many successes
in tackling the AIS trajectory denoising and prediction tasks
[21]. Hoque and Sharma applied long short-term memory
neural network to forecast ship trajectories, which were
employed to suppress the AIS data anomaly [22]. Kim and
Lee proposed a novel deep neural network model to remove
AIS outliers and thus predict both medium- and long-term
ship trajectory variation tendencies [23]. Similar researches
can be found in [8, 24–28].

We aim to propose a novel AIS denoising and prediction
framework with the support of data quality control proce-
dure. Our main contributions can be summarized as follows:
(1) we cleansed the raw AIS data with the steps of trajectory
separation, outlier removal, and data normalization; (2) we
predicted ship trajectory via the denoised AIS data with the
artificial neural network (ANN); (3) we testified the pro-
posed framework performance on two ship trajectories. *e
study can help maritime traffic participants forecast accurate
ship trajectories and thus take early-warning measurements
to enhance maritime traffic efficiency and safety. *e re-
mainder of the paper is organized as follows. We introduce
the data source used in our study in Section 2. After that, the
methodology details about the AIS data denoising are il-
lustrated in Section 3, and then the ANN model used for
predicting ship trajectories is presented. *e experimental
results are shown in Section 4. Section 5 briefly concludes the
study and illustrates future work.

2. Data

*e U.S. Marine Energy Administration and National
Oceanic and Atmospheric Administration provides large-
scale AIS data, which benefits many AIS relevant studies due
to its public accessibility (https://marinecadastre.gov/ais/)
[29, 30].*e original AIS dataset includes both kinematic and
static information for the ship, which contains MMSI, Co-
ordinated Universal Time (UTC), latitude, longitude, speed
over ground (SOG), heading, course over ground (COG),
timestamp, call sign, and so forth. We collect the AIS data

from the Gulf of Mexico with latitude ranging from 18°N to
31°N, and the longitude falls in the interval [75°W, 100°W].
*e minimum time interval for sampling the AIS data is 1 s,
and the maximum value is 500 s. We collect 12813 AIS data
samples on April 11, 2017, from the above-mentioned da-
tabase (see Figure 1). Following the international standard for
representation of latitude and longitude, the south latitude
(west longitude) is denoted as a negative number, while north
latitude (east longitude) is presented with a positive number.

3. Methodology

*e raw AIS data may contain different types of outliers due
to instable signal transmission rate, data transmission
congestion, etc. It is important to suppress such data
anomalies for the purpose of exploiting reliable maritime
traffic kinematic information from the AIS dataset. To ad-
dress the issue, we firstly implement the data quality control
procedure to remove the trajectory outliers and then predict
the trajectory with artificial neural network. *e schematic
overview for the proposed framework is shown in Figure 2.

3.1. Data Quality Control for Suppressing AIS Outliers.
Ship trajectory data (i.e., AIS data) is stored in the database
via data delivering/receiving timestamp, and thus we need to
aggregate trajectory data (from a single ship) before con-
ducting ship trajectory analysis relevant researches. For the
purpose of thoroughly removing anomalous AIS samples,
we implement the data quality control with steps of ship
trajectory extraction, data cleansing, and data formatting
(i.e., AIS time interval normalization).

3.1.1. Ship Trajectory Extraction. *e ship trajectory ex-
traction can be divided into separating trajectories from
different ships and removing discontinuous ship trajectories.
It is noted that the ship can be uniquely identified by the
MMSI, which is thus applied to separate AIS data samples
from different ships.*en, the raw AIS samples are sorted by
timestamp in an ascending manner. It is found that an AIS
sample may be recorded in database for several times. To
address the issue, the repetition samples are removed to
avoid being further processed when the constraints in
equation (1) are satisfied. *e outputs from the above step
are the raw ship trajectories. We find that several time in-
tervals between neighboring samples are very large (e.g., four
hours), indicating that many AIS data are lost. Such AIS data
discontinuity imposes big challenge for analyzing ship ki-
nematic moving state in detail. To overcome the disad-
vantage, we divide the raw ship trajectory into different
segments when the time interval between neighboring
samples exceeds a threshold (see equation (2)):

Ta � Tb,

Lata � Latb,

Lona � Lonb,

⎧⎪⎪⎨

⎪⎪⎩
(1)

Ti >Tth, (2)
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where Ta and Tb are the timestamps from two AIS records.
*e ship positions at timestamp Ta are denoted as Lata and
Lona, respectively. Latb and Lonb are the counterparts at
timestamp Tb. Ti is the time interval between neighboring
samples. Tth is the threshold, which is set to 4 hours by
default.

3.1.2. Removal of AIS Data Anomaly. After obtaining the
AIS data in the above step, we implement the anomaly data
denoising procedure to remove AIS data noises. Typical AIS
data outliers are summarized as follows: (a) *e longitude
and (or) latitude: it is far beyond the reasonable range. We
collect the AIS data in the Gulf of Mexico, and the longitude
(latitude) is supposed to fall in 75°W (18°N) and 100°W
(31°N). *e ship trajectory will be considered as outliers
when the ship spatial data (i.e., latitude and longitude)
exceed the range. Moreover, sudden longitude (latitude)
variation is another type of typical outlier, and we employ
the moving average method to correct the data outliers (see
equation (3)). (b) Abnormal velocity data: after manually
checking the raw AIS data, we find several ship speed
samples are very high (i.e., larger than 30 knots). It is less
likely for a ship travelling in inland waterways at such speed
for the purpose of ensuring maritime traffic safety. (c) Ship

course outlier: ship may change its moving direction in
coastal areas to avoid maritime traffic collision. But large
ship course variation is not permitted in real world. We
average the neighboring ship courses to remove such data
outlier. Given ship headings C1, C2, and C3 from three
neighboring AIS trajectory samples (with timestamps t1, t2,
and t3), we consider C2 as the outlier when the condition in
equation (4) is satisfied.*e ship heading C2 is updated as C2′
with equation (5):

lati �
lat(i−1) + lat(i+1)

2
lati − lat(i−1)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

> latth and lati − lat(i+1)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> latth,

loni �
lon(i−1) + lon(i+1)

2
loni − lon(i−1)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

> lonth and loni − lon(i+1)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> lonth.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

C2 − C1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>Cth,

C2 − C3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>Cth,

C1 − C3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Cth,

⎧⎪⎪⎨

⎪⎪⎩
(4)

Figure 1: Raw AIS data collected from Gulf of Mexico.
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Figure 2: Overview for the proposed AIS trajectory reconstruction framework.

Mathematical Problems in Engineering 3



C2′ � C1 +
C1 − C3

t13
× t12, C1 > C3,

C2′ � C3 +
C3 − C1

t13
× t12, C1 < C3.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

Here, ship latitude and longitude at timestamp i are lati and
loni, respectively. *e rule is applicable to lat(i−1), lat(i+1),
lon(i−1), and lon(i+1). latth and lonth are the thresholds for the
latitude and longitude, respectively. Cth is the ship heading
variation threshold. *e parameter t13 is time difference
between timestamps t1 and t3, and t12 is the time interval
between t1 and t2.

3.1.3. AIS Data Normalization. We can obtain noise-free
AIS dataset after implementing the above two steps. It is
found that time interval may vary from different data
samples, which hinders ship trajectory reconstruction model
from accurately extracting AIS intrinsic patterns. In that
manner, it is difficult to predict ship trajectory in real-world
applications. To address the issue, we employ the cubic
spline interpolation and moving average models to nor-
malize the AIS data series. Given three noise-free AIS tra-
jectories A1, A2, and A3, we label and store the AIS samples
A1 and A3 assuming that one of the following conditions is
met (see equations (6) to (9)). Moreover, the AIS sample A2
is denoted as flag data when the constraints in equation (10)
are satisfied. We normalize the ship trajectory samples
between A1 and A2 with the cubic spline interpolation, and,
for more details, we suggest the reader to refer to [31]. *e
ship AIS data between A2 and A3 is normalized with the
moving average model, and details can be found in [26].

Note that appropriate time interval is crucial for ship
trajectory analysis due to the fact that large time interval can
lead to ship kinematic information loss, and smaller time
interval may introduce trivial ship moving patterns. After
carefully exploiting time interval distributions via the col-
lected AIS data samples (see Figure 3), we find the majority
of time for interval samples is 60 s, which is set as default
value in our study without further specifications:

d12

d23
>dt1, (6)

t12 > tt1, (7)

v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> vth, (8)

d12 <dt2, (9)

t23 < tt2,

d12 > dt3,

d23 > dt4,

⎧⎪⎪⎨

⎪⎪⎩
(10)

where d12 · (d23) is the ship displacement between positions
A1 · (A2) and A2 · (A3) (A3). Parameter t12 · (t23) is time
cost for the ship travelling from position A1 · (A2) to po-
sition A2 · (A3). *e speed recorded in the trajectory sample

A1 is v1, and the rule is applicable to v2. dt1, tt1 vth, dt2, tt2,
dt3, and dt4 are the thresholds, with the default settings being
5, 360, 5, 10, 160, 30, and 30.

3.2. Ship Trajectory Prediction with the ANN Model. *e
artificial neural network model has shown great success-
fulness in many roadway traffic flow prediction applications,
which demonstrates its potential in ship trajectory predic-
tion task.*emain advantages of the back-propagation (BP)
neural network are strong nonlinear curve fitting capability,
low complexity, and self-learning ability, which can easily
identify and predict ship trajectory variation tendency.
Moreover, the ANN model can output ship trajectory
prediction results in real-time manner due to the low
computational cost, which can provide instant maritime
traffic information for tackling time-demanding maritime
tasks. Based on the above reasons, we employ the ANN
model to predict AIS trajectories. *e ANN model exploits
intrinsic relationship between input training (and testing)
data and the output samples with the human-like infor-
mation perception rule.

For the given gth neuron node, we denote by Aj (j� 1, 2,
. . ., J) the input ship AIS trajectory. wj ( j� 1, 2, . . ., J) rep-
resents the weight for each ship trajectory. Based on that, the
input AIS data for the gth neuron node is obtained by equation
(11). Note that the hidden layer in a BP neural network plays
the role of extracting ship travelling patterns from the AIS data.
With the help of transfer function, the BP neural network can
learn the nonlinearity patterns among the input ship AIS data
samples, and the sigmoid transfer function used in our study is
shown in equation (12). *e BP network measures difference
between the predicted AIS trajectories and ground-truth data,
which is returned back to network to adjust the model
structure and neuron settings for the purpose of obtaining
optimal ship trajectory prediction results:

N
g

in � 􏽘

J

j�1
w
∗
j Aj, (11)

f s
j
g􏼐 􏼑 �

1
1 + exp −s

j
g􏼐 􏼑􏼐 􏼑

, (12)

where N
g

in is the input for the gth neuron node and s
j
g is the

state of the gth neuron of the hidden layer with the jth AIS
sample.
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Figure 3: Time interval distribution for the collected AIS samples.
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3.3. Evaluation Metrics. To quantify the ship trajectory
prediction performance, we compare the predicted AIS data
with ground truth data with typical statistical measurements.
Following the rule in previous studies [26, 27], we employ
the root mean square error (RMSE), mean absolute error
(MAE), Frechet distance (FD), and average Euclidean dis-
tance (AED) to measure the prediction goodness. For any
given ship trajectories, the prediction accuracy is quantified
with the above-mentioned statistical indicators (see equa-
tions (13) to (16)). *e smaller RMSE, MAE, FD, and AED
indicate more accurate ship trajectory prediction accuracy,
and vice versa. Note that both the RMSE and MAE indi-
cators are implemented to quantify the ship trajectory
prediction accuracy in terms of longitude and latitude,
respectively:

RMSE�

������������

1
n

􏽘

n

i�1
pi − gi( 􏼁

2
,

􏽶
􏽴

(13)

MAE�
1
n

􏽘

n

i�1
pi − gi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (14)

FD� max
iε[1,n]

�����������������������������

pi(x) − gi((x)( 􏼁
2

+ pi(y) − gi(y)( 􏼁
2

􏽱

, (15)

AED�
􏽐

n
i�1

�����������������������������

pi(x) − gi(x)( 􏼁
2

+ pi(y) − gi(y)( 􏼁
2

􏽱

n
, (16)

where n is the number of AIS data samples. pi is the ith
predicted AIS data sample, and gi is the ith ground truth AIS
data samples. *e parameters pi(x) and pi(y) are the lat-
itude and longitude for the ith predicted AIS data sample,
and gi(x) and gi(y) are the counterparts for the ith ground
truth AIS sample.

4. Experiment

For the purpose of evaluating framework performance, we
have collected two typical ship trajectories (i.e., two groups
of AIS data samples) from the observed navigation region.
*eAIS data for the ship withMMSI No. 357234000 andNo.
367715380 were collected from the above-mentioned data
base, which were denoted as Case 1 and Case 2, respectively.
*e ship trajectory for Case 1 was sampled from 24 January,
2017, to 25 January, 2017. *e data samples for Case 2 were
collected on 6 January, 2017. *e framework was imple-
mented on Windows10 OS with 16GB RAM and 4GHz
CPU.We employed Python (3.5 version) to perform the data
quality control and prediction procedure on the ship tra-
jectory data.

4.1. Ship Trajectory Reconstruction on Case 1. We first
presented the ship trajectory reconstruction results on
Case 1 (i.e., the ship with MMSI No. 357234000) and then
verified the model performance on the AIS data from the
ship with MMSI No. 367715380. *e spatial-temporal
ship trajectory distribution shown in Figure 4 indicated

that the ship was travelling back and forth in small area
considering that both ship longitudes and latitudes
varied in small range. But several obvious outliers were
found in the raw ship trajectory data. More specifically,
the anomalous ship positions from several AIS data
samples were far away from their neighbors, which
showed unreasonable ship displacement. After carefully
checking the raw AIS data, we found that average ship
moving speed was quite slow (i.e., smaller than 4 knots).
*e main reason is that the ship is a special survey
seismic vessel which was towing on the water surface at a
large area (e.g., towing a dozen of sensors connected by
hydrophone streamer cables). Moreover, the ship’s in-
stant speed reached 20 knots when the ship position was
considered as obvious outlier (e.g., abnormal ship lati-
tude and/or longitude). It can be inferred that the ship
finished the task in the current coastal region and thus
speeded up to another sea area. Besides, the abnormal
ship longitude positions were different from those of the
latitude counterparts (see Figures 4(a) and 4(b), re-
spectively). In that way, anomaly ship trajectory sample
was observed when latitude (or latitude) was interfered
by neighboring ship positions.

*e denoised ship trajectory showed that abnormal data
samples were successfully removed by the proposed
framework considering that no outliers were observed in the
spatial-temporal trajectory distributions. *e denoised ship
latitude and longitude distributions shown in Figures 5(a)
and 5(b) confirmed the above analysis. It is observed that the
denoised ship longitude varied from −89.6° to −89.8°, and the
latitude data varied from 27.8° to 28°. It can be inferred that
the ship travelled in an area with a radius about 2 km, and
thus the ship was indeed in mooring state. We observed that
ship trajectory samples were not evenly distributed con-
sidering that many data discontinuities are found in Fig-
ure 5. To alleviate such discontinuity, we have normalized
the ship trajectory samples which are shown in Figure 6. *e
raw denoised ship trajectories were interpolated into evenly
distributed data series, and discontinuous data samples were
successfully removed (see Figures 6(a) and 6(b),
respectively).

*e ship trajectory reconstruction results were fur-
ther evaluated by ship trajectory prediction accuracy,
which can be found in Table 1 (note that our proposed
framework is denoted as DANN). We have implemented
another popular trajectory prediction model (i.e., the
long short-term memory model (abbreviated as LSTM))
[32] for the purpose of prediction performance com-
parison. From the perspective of MAE, the longitude
error of our proposed framework was approximately
one-tenth to that of LSTM, which is 3.94 × 10−3. *e
latitude MAE obtained by our model is 2.07 × 10−3, which
is about 1% to that of the LSTM counterpart. *e RMSE
indicators for the longitude and latitude obtained by the
proposed framework were both 5.41 × 10−4, which
showed similar variation tendency to those of MAE. Both
the FD and AED indictors demonstrated distance be-
tween predicted and ground truth data samples, which
showed similar tendency to those of MAE and RMSE.
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4.2. Ship Trajectory Reconstruction on Case 2. *e model
performance of the proposed framework was validated on
another trajectory with ship MMSI No. 367715380. We
applied the same procedure to improve the AIS data
quality, and thus ship trajectory prediction was further
implemented. We observed several sudden variations in
both latitude and longitude data samples (see Figures 7(a)
and 7(b), respectively). Moreover, the maximum distance
between neighboring ship latitudes was over 1000 km,
which is quite impossible in real world. Figures 7(c) and
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Figure 4: Raw ship trajectory distributions via AIS data for Case 1. (a) Raw longitude data distribution. (b) Raw latitude data distribution.

Table 1: Ship trajectory prediction performance results for Case 1.

DANN LSTM
MAE (LON)∗ 3.94 × 10−3 2.00 × 10−2

MAE (LAT) 2.07 × 10−3 2.49 × 10−1

RMSE (LON) 5.41 × 10−4 6.69 × 10−4

RMSE (LAT) 5.41 × 10−4 1.72 × 10−2

FD 9.83 × 10−2 3.05 × 10−1

AED 5.16 × 10−3 2.51 × 10−1

∗Note. MAE (LON) is the MAE value for longitude data, and the rule is
applicable to MAE (LAT), RMSE (LON), and RMSE (LAT).
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Figure 5: Denoised ship trajectory distributions via AIS data for Case 1. (a) Denoised longitude data distribution. (b) Denoised latitude data
distribution.
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Figure 6: Normalized ship trajectory distributions via AIS data for Case 1. (a) Normalized longitude data distribution. (b) Normalized
latitude data distribution.
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7(d) demonstrated the AIS data after implementing the
data quality control procedure. It is demonstrated that
ship trajectory outliers were successfully removed by our
proposed framework. *e ship trajectory prediction re-
sults indicated that our proposed framework obtained
higher accuracy compared to the LSTM model. For in-
stance, the MAE indicators for the DANN latitude and
longitude were 2.23 × 10−3 and 2.60 × 10−3, respectively,
which were both approximately one-tenth to those of the
LSTM counterparts (see Table 2). *e RMSE, FD, and
AED indicators showed similar variation tendency to
those of the MAE.

5. Conclusion

It is not easy to obtain accurate ship trajectory information
via historical AIS data due to unpredicted noises. We
proposed a novel framework by integrating steps of data
denoising, data normalization, and trajectory prediction.
*e proposed framework firstly identified different ship
trajectories via time interval between neighboring data
samples, which is the first substep in the data quality control
procedure of the proposed framework. *en, the data
outliers in the raw AIS data were determined with a group of
constraints, which were further corrected by the moving
average method. After that, the denoised AIS data were
normalized into data samples for the purpose of ship tra-
jectory analysis applications. *en, we predicted ship tra-
jectory with the ANN model for the purpose of further
evaluating model performance. *e experiments were
implemented on two ship trajectories (i.e., typical outliers
were observed in the raw data).*e statistical results showed
that our proposed framework can successfully remove ab-
normal AIS data outliers and obtained satisfying ship tra-
jectory prediction performance (i.e., the average MAE,
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Figure 7: Ship trajectory distributions via AIS data for Case 2. (a) Raw longitude data distribution. (b) Raw latitude data distribution. (c)
Normalized longitude data distribution. (d) Normalized latitude data distribution.

Table 2: Ship trajectory prediction performance results for Case 2.

DANN LSTM
MAE (LON) 2.23 × 10−3 1.64 × 10−1

MAE (LAT) 2.60 × 10−3 1.94 × 10−1

RMSE (LON) 8.10 × 10−4 1.17 × 10−2

RMSE (LAT) 8.14 × 10−4 2.35 × 10−2

FD 3.46 × 10−2 4.40 × 10−1

AED 4.25 × 10−3 2.82 × 10−1
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RMSE, FD, and AED are 2.71 × 10−3, 6.77 × 10−4,
6.65 × 10−2, and 4.71 × 10−3).

We can expand our work by conducting further studies
in the following aspects. First, we applied our proposed
framework to cleanse and predict ship trajectories on the AIS
data from two special-purpose ships, which is more chal-
lenging due to the irregular and unpredicted spatial-tem-
poral movements. In future, we can employ the proposed
framework to denoise and forecast ship trajectories for
general-purpose merchant ships (e.g., oil tankers and con-
tainer ships) to further testify the model performance.
Second, it is noted that the ANN module in the proposed
framework may suffer from the overfitting disadvantage,
which may degrade the model performance. We can employ
additional bio-inspired models to further enhance the model
prediction accuracy. *ird, we can obtain more holistic
model performance by comparing it against other popular
ship trajectory prediction models. Fourth, we can test the
model robustness on the AIS data collected under more
complicated navigation environment interferences (e.g.,
ship sailing at narrow and busy channels). Last but not least,
we can implement maritime situation awareness task (e.g.,
ship behavior analysis and prediction) by exploiting the
obtained historical AIS data.
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